inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Silver indium diphosphate, AgInP2O7

Hafid Zouihri,^a*‡ Mohamed Saadi,^a Boujemaa Jaber^b and Lehcen El Ammari^a

^aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco, and ^bCentre National pour la Recherche Scientifique et Technique, Division UATRS, Angle Allal AlFassi et Avenue des FAR, Hay Ryad, BP 8027, Rabat, Morocco Correspondence e-mail: zouibri@cnrst.ma

Received 9 December 2010; accepted 14 December 2010

Key indicators: single-crystal X-ray study; T = 296 K, P = 0.0 kPa; mean σ (P–O) = 0.002 Å; R factor = 0.021; wR factor = 0.048; data-to-parameter ratio = 36.9.

Polycrystalline material of the title compound, AgInP₂O₇, was synthesized by traditional high-temperature solid-state methods and single crystals were grown from the melt of a mixture of AgInP₂O₇ and B₂O₃ as flux in a platinium crucible. The structure consists of InO₆ octahedra, which are cornershared to PO₄ tetrahedra into a three-dimensional network with hexagonal channels running parallel to the *c* axis. The silver cation, located in the channel, is bonded to seven O atoms of the [InP₂O₇] framework with Ag–O distances ranging from 2.370 (2) to 3.015 (2) Å. The P₂O₇ diphosphate anion is characterized by a P–O–P angle of 137.27 (9) and a nearly eclipsed conformation. AgInP₂O₇ is isotypic with the M^{I} FeP₂O₇ (M^{I} = Na, K, Rb, Cs and Ag) diphosphate family.

Related literature

For properties of M^{I} FeP₂O₇ (M^{I} = Na, K, Rb, Cs and Ag) diphosphates, see: Terebilenko *et al.* (2010); Hizhnyi *et al.* (2008); Whangbo *et al.* (2004); Vitins *et al.* (2000). For isotypic structures, see: Belkouch *et al.* (1995); Gabelica-Robert *et al.* (1982); Moya-Pizarro *et al.* (1984); Mercader *et al.* (1990).

Experimental

Crystal data	
AgInP ₂ O ₇	a = 7.4867 (3) Å
$M_r = 396.63$	b = 8.2620 (3) Å
Monoclinic, $P2_1/c$	c = 9.8383 (5) Å

 $\beta = 112.038 \ (2)^{\circ}$ $V = 564.09 \ (4) \ \text{Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker X8 APEXII CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1999) $T_{\rm min} = 0.563, T_{\rm max} = 0.667$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.048$ S = 1.033730 reflections $\mu = 8.11 \text{ mm}^{-1}$ T = 296 K $0.08 \times 0.06 \times 0.05 \text{ mm}$

21692 measured reflections 3730 independent reflections 3245 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

101 parameters $\Delta \rho_{\text{max}} = 1.62 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -2.04 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2154).

References

- Belkouch, J., Monceaux, L. & Courtine, P. (1995). Mater. Res. Bull. 30, 149-160.
- Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabelica-Robert, M., Goreaud, M., Labbe, Ph. & Raveau, B. (1982). J. Solid State Chem. 45, 389–395.
- Hizhnyi, Y. A., Oliynyk, A., Gomenyuk, O., Nedilko, S. G., Nagornyi, P., Bojko, R. & Bojko, V. (2008). *Opt. Mater.* **30**, 687–689.
- Mercader, R. C., Terminiello, L., Long, G. J., Reichel, D. G., Dickhaus, K., Zysler, R., Sanchez, R. & Tovar, M. (1990). *Phys. Rev. B Condens. Matter*, 42, 25–32.

Moya-Pizarro, T., Salmon, R., Fournes, S. L., Le Flem, G., Wanklyn, B. S. & Hagenmuller, P. (1984). J. Solid State Chem. 53, 387–397.

- Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Terebilenko, K. V., Kirichok, A. A., Baumer, V. N., Sereduk, M., Slobodyanik, N. S. & Gütlich, P. (2010). J. Solid State Chem. 183, 1473–1476.
- Vitins, G., Kanepe, Z., Vitins, A., Ronis, J., Dindune, A. & Lusis, A. (2000). J. Solid State Electochem. 4, 146–152.
- Whangbo, M.-H., Dai, D. & Koo, H.-J. (2004). Dalton Trans. pp. 3019-3025.

[‡] Permanent address: Centre National pour la Recherche Scientifique et Technique, Division UATRS, Angle Allal AlFassi et Avenue des FAR, Hay Ryad, BP 8027, Rabat, Morocco.

supplementary materials

Acta Cryst. (2011). E67, i2 [doi:10.1107/81600536810052451]

Silver indium diphosphate, AgInP₂O₇

H. Zouihri, M. Saadi, B. Jaber and L. El Ammari

Comment

The diphosphates $A^{I}M^{III}P_{2}O_{7}$ (A^{I} = Li, Na, K, Rb, Cs and Ag; M^{III} = Al, Ga, Cr, Fe, In, Y) are extensively studied for their electrical and optical properties and for its perspective application as magnetic materials (Terebilenko *et al.* (2010); Hizhnyi *et al.* (2008); Whangbo *et al.* (2004); Vitins *et al.* (2000)). The crystal structures of most of these compounds are known except a few cases in which the crystal growth is difficult. In this context, the present paper reports on the determination of AgInP₂O₇ crystal structure from X-ray diffraction single-crystal data.

The structure of this phosphate is characterized by a three-dimensional network built up from indum octahedra linked to diphosphate groups by a corner-sharing. Each InO₆ octahedra is surrounded by six PO₄ tetrahedra belonging to five different P₂O₇ groups (see Fig.1 and Fig.2). As a result of these blocks, assemblage three-dimensional-framework is formed with hexagonal channels, where silver cations reside. Although, the coordination sphere of Ag⁺ cations is composed of seven O^{2^-} anions in an irregular geometry, located at Ag–O distances between 2.370 (2) and 3.015 (2) Å (see Fig.2). Furthermore, the diphosphate group contains two distorted PO₄ tetrahedra sharing one corner and display a nearly eclipsed conformation. The P–O bond-lengths range between 1.492 (2) Å for terminal P1–O1 and 1.606 (2) Å for the bridging P2–O7 bond. Therefore, a P1–O7–P2 angle of 137.27 (9) ° is wider than 133.6 (3)° and 132.9 (3) ° reported for both AgFeP₂O₇ and NaFeP₂O₇ respectively (Belkouch *et al.* (1995); Gabelica-Robert *et al.* (1982); Moya-Pizarro *et al.* (1984); Mercader *et al.* (1990)).

Silver indium diphosphate (pyrophosphate) is isostructural to $A^{I}FeP_{2}O_{7}$ ($A^{I} = Na, K, Rb, Cs$ and Ag) diphosphates family and is categorized as a dichromate type.

Experimental

AgInP₂O₇ in the form of single crystals was prepared by stoichiometric reaction of AgNO₃, $(NH_4)_2HPO_4$ and In₂O₃ in B₂O₃ flux. The mixture was heated at 773 K under ambiante atmosphere for 6 h and 973 K for 2 h with intermediate grindings to ensure complete reaction. Subsequent melting at 1323 K followed by slow cooling to room temperature at a rate of 12°K h⁻¹ resulted in colourless crystals of the title compound.

Refinement

The highest and deepest hole residual peak in the final difference Fourier map are located at 0.49 Å and 0.58 Å, respectively from Ag1 atom. The not significants bonds and angles were removed from the CIF file.

Figures

Fig. 1. Partial plot of AgInP₂O₇ crystal structure shawing plyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) -x, y - 1/2, -z + 1/2; (iii) -x + 1, -y + 1, -z + 1; (iv) x, -y + 3/2, z - 1/2; (v) x - 1, y, z; (vi) x - 1, -y + 3/2, z - 1/2; (vii) -x, -y + 1, -z + 1.

Fig. 2. Perspective view along [101] of the $AgInP_2O_7$ framework structure shawing tunnel where silver cations are located.

Silver indium diphosphate

Crystal data

AgInP₂O₇ $M_r = 396.63$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.4867 (3) Å b = 8.2620 (3) Å c = 9.8383 (5) Å $\beta = 112.038$ (2)° V = 564.09 (4) Å³ Z = 4

Data collection

Bruker X8 APEXII CCD area-detector diffractometer	3730 independent reflections
Radiation source: fine-focus sealed tube	3245 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
ω and ϕ scans	$\theta_{\text{max}} = 41.0^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)	$h = -13 \rightarrow 13$
$T_{\min} = 0.563, T_{\max} = 0.667$	$k = -15 \rightarrow 15$
21692 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

F(000) = 728 $D_x = 4.670 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 317 reflections $\theta = 2.5-30.2^{\circ}$ $\mu = 8.11 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.08 \times 0.06 \times 0.05 \text{ mm}$

$R[F^2 > 2\sigma(F^2)] = 0.021$	$w = 1/[\sigma^2(F_o^2) + (0.017P)^2 + 0.9979P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.048$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 1.62 \text{ e } \text{\AA}^{-3}$
3730 reflections	$\Delta \rho_{min} = -2.04 \text{ e } \text{\AA}^{-3}$
101 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
0 restraints	Extinction coefficient: 0.0171 (4)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
In1	0.242354 (15)	0.495357 (12)	0.247622 (11)	0.00618 (3)
Ag1	-0.20911 (3)	0.52697 (2)	0.30478 (2)	0.02442 (4)
P1	0.57689 (6)	0.74758 (5)	0.46083 (4)	0.00600 (6)
P2	0.17589 (6)	0.78735 (5)	0.45174 (4)	0.00656 (6)
01	0.6810 (2)	0.86792 (17)	0.40464 (15)	0.0141 (2)
O2	0.6836 (2)	0.71622 (16)	0.62241 (14)	0.0136 (2)
03	0.52473 (17)	0.59259 (15)	0.36935 (14)	0.01027 (19)
O4	0.04427 (18)	0.91166 (17)	0.35059 (15)	0.0123 (2)
05	0.1917 (2)	0.79561 (16)	0.60976 (14)	0.0126 (2)
O6	0.13231 (18)	0.61348 (15)	0.39564 (14)	0.01054 (19)
07	0.37868 (18)	0.83601 (16)	0.44239 (16)	0.0128 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
In1	0.00656 (4)	0.00614 (4)	0.00593 (4)	-0.00024 (3)	0.00244 (3)	-0.00045 (3)
Ag1	0.01913 (7)	0.02720 (8)	0.03341 (9)	-0.00235 (6)	0.01725 (7)	-0.01071 (7)
P1	0.00574 (14)	0.00643 (14)	0.00582 (14)	-0.00025 (11)	0.00217 (11)	0.00044 (11)
P2	0.00588 (14)	0.00706 (14)	0.00644 (14)	0.00073 (11)	0.00195 (11)	-0.00090 (12)
O1	0.0185 (6)	0.0141 (5)	0.0133 (5)	-0.0053 (4)	0.0104 (5)	0.0012 (4)
O2	0.0195 (6)	0.0098 (5)	0.0070 (4)	-0.0006 (4)	-0.0001 (4)	0.0018 (4)
O3	0.0072 (4)	0.0099 (5)	0.0130 (5)	-0.0012 (3)	0.0030 (4)	-0.0040 (4)
O4	0.0084 (5)	0.0135 (5)	0.0135 (5)	0.0034 (4)	0.0023 (4)	0.0041 (4)

supplementary materials

05	0.0211 (6)	0.0099 (5)	0.0072 (4)	-0.0009 (4)	0.0058 (4)	-0.0023 (4)	
06	0.0116 (5)	0.0097 (5)	0.0123 (5)	-0.0019 (4)	0.0067 (4)	-0.0039(4)	
07	0.0078 (5)	0.0100 (5)	0.0217(6)	0.0010 (4)	0.0069 (4)	-0.0020 (4)	
Geometric parameters (Å, °)							
In1—O1 ⁱ		2.0799 (13)	A	Ag1—O5 ^{vii}	2.7829 (14)		
In1—O4 ⁱⁱ		2.1120 (12)	A	Ag1—O6 ^{vii}	3.0153 (14)		
In1—O2 ⁱⁱⁱ		2.1133 (13)	F	21—01	1.4	919 (13)	
In1—O5 ^{iv}		2.1401 (13)	F	P1—O2	1.5097 (13)		
In1—O3		2.1562 (12)	F	91—03	1.5	292 (13)	
In1—O6		2.1569 (12)	F	P1—07	1.6021 (13)		
Ag1—O3 ^v		2.3703 (12)	F	2-04	1.5101 (13)		
Ag1—O6		2.4757 (13)	F	2-05	1.5158 (13)		
Ag1—O4 ⁱⁱ		2.4865 (14)	F	2-06	1.5295 (13)		
Ag1—O2 ^{vi}		2.6991 (14)	F	2-07	1.6	062 (13)	
Ag1—O7 ⁱⁱ		2.7744 (15)					
O1 ⁱ —In1—O4 ⁱⁱ		90.70 (6)	(03 ^v —Ag1—O5 ^{vii}	94.	99 (4)	
O1 ⁱ —In1—O2 ⁱⁱⁱ		86.35 (6)	(06—Ag1—O5 ^{vii}	104	4.03 (4)	
O4 ⁱⁱ —In1—O2 ⁱⁱⁱ		89.82 (6)	0	04 ⁱⁱ —Ag1—O5 ^{vii}	80.	85 (4)	
O1 ⁱ —In1—O5 ^{iv}		89.04 (5)	(02 ^{vi} —Ag1—O5 ^{vii}	15	7.25 (4)	
O4 ⁱⁱ —In1—O5 ^{iv}		93.79 (5)	0	07 ⁱⁱ —Ag1—O5 ^{vii}	71.	00 (4)	
$O2^{iii}$ —In1— $O5^{iv}$		174.18 (6)	0	03 ^v —Ag1—O6 ^{vii}	72.	37 (4)	
O1 ⁱ —In1—O3		96.36 (5)	(06—Ag1—O6 ^{vii}	88.	04 (4)	
O4 ⁱⁱ —In1—O3		172.86 (5)	(04 ⁱⁱ —Ag1—O6 ^{vii}	119	9.79 (4)	
O2 ⁱⁱⁱ —In1—O3		89.55 (5)	(02 ^{vi} —Ag1—O6 ^{vii}	143	8.46 (4)	
O5 ^{iv} —In1—O3		87.43 (5)	0	07 ⁱⁱ —Ag1—O6 ^{vii}	119	9.64 (4)	
O1 ⁱ —In1—O6		173.56 (5)	(05 ^{vii} —Ag1—O6 ^{vii}	50.	65 (4)	
O4 ⁱⁱ —In1—O6		82.94 (5)	(D1—P1—O2	11	1.17 (8)	
O2 ⁱⁱⁱ —In1—O6		92.62 (5)	(D1—P1—O3	113	3.17 (8)	
O5 ^{iv} —In1—O6		92.35 (5)	(02—P1—O3	113	3.16 (8)	
O3—In1—O6		89.98 (5)	(D1—P1—O7	104	4.17 (8)	
O3 ^v —Ag1—O6		134.04 (4)	(02—P1—O7	10	7.40 (8)	
O3 ^v —Ag1—O4 ⁱⁱ		155.99 (4)	(03—P1—O7	10	7.10 (7)	
O6—Ag1—O4 ⁱⁱ		69.47 (4)	0	04—P2—O5	11:	5.20 (8)	
O3 ^v —Ag1—O2 ^{vi}		85.86 (5)	(04—P2—O6	113	3.76 (8)	
O6—Ag1—O2 ^{vi}		91.29 (4)	(05—P2—O6	109	9.65 (8)	
O4 ⁱⁱ —Ag1—O2 ^{vi}		89.15 (5)	(04—P2—O7	10	0.90 (8)	
O3 ^v —Ag1—O7 ⁱⁱ		102.17 (4)	(05—P2—O7	10	9.63 (8)	
O6—Ag1—O7 ⁱⁱ		123.47 (4)	(06—P2—O7	10	7.01 (7)	
O4 ⁱⁱ —Ag1—O7 ⁱⁱ		54.04 (4)	F	P1—O7—P2	13	7.27 (9)	
O2 ^{vi} —Ag1—O7 ⁱⁱ		86.57 (4)					

Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2; (iii) -x+1, -y+1, -z+1; (iv) x, -y+3/2, z-1/2; (v) x-1, y, z; (vi) x-1, -y+3/2, z-1/2; (vii) -x, -y+1, -z+1.

Fig. 1

